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Abstract

Based on state and channel isomorphism we point out that semidefinite
programming can be used as a quick test for nonzero one-way quantum channel
capacity. This can be achieved by searching for symmetric extensions of states
isomorphic to a given quantum channel. With this method we provide examples
of quantum channels that can lead to high entanglement transmission but still
have zero one-way capacity, in particular, regions of symmetric extendibility
for isotropic states in arbitrary dimensions are presented. Further, we derive
a new entanglement parameter based on (normalized) relative entropy distance
to the set of states that have symmetric extensions and show explicitly the
symmetric extension of isotropic states being the nearest to singlets in the set
of symmetrically extendible states. The suitable regularization of the parameter
provides a new upper bound on one-way distillable entanglement.

PACS numbers: 03.67.−a, 03.67.Hk

1. Introduction

Quantum channels [1] are a very important notion of quantum information theory [2]. It has
been proven [1] that there is a connection between entanglement distillation [3] and quantum
channel capacities. The no-cloning principle has been used to prove that for some region the
quantum depolarizing channel has zero capacity even if does not destroy entanglement [4].

Following seminal work [5] and asymptotic analysis [6] that predicted limit formulae
for conjectured hashing inequality [6] recently, the proof of hashing inequality has been
provided [7–9]. On the other hand the connection between quantum channels and entanglement
distillation [1] has been developed [6, 10] leading in particular to strong nonadditivity effects in
the case of more than one receiver [11]. Further, an interesting technique based on approximate
quantum cloning was used in [4] to point out a limit of depolarizing a qubit channel. This
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approach has been further extended in an elegant way to the case of Pauli channels [12] via
asymmetric cloning machines.

In the present approach we shall use the above techniques exploiting also a general
notion of symmetric extension of a quantum state that was efficiently applied with the help
of semidefinite programming to characterize quantum entanglement [13, 14] and states that
admit local hidden variables models [15].

To be more specific, in this paper we develop qualitative equivalence between
entanglement distillation and quantum channels theory showing in particular that:

(i) semidefinite programming can serve as a simple and quick test for nonzero one-way
channel capacity via looking for symmetric extensions of the state �(�),

(ii) if normalized and regularized, the distance of a given quantum state above to the set
of symmetrically extendible states provides a new entanglement parameter that leads to an
upper bound on one-way distillable entanglement of the state.

To show that SDP can lead to interesting results we provide the family of quantum
channels that allow for quite high entanglement transmission but, however, have one-way
capacity zero due to the existence of a symmetric extension of the corresponding quantum
state. The corresponding extensions are explicitly constructed.

2. One-way distillable entanglement

Following the idea [4] of developing restriction on the qubit depolarizing channel from
approximate quantum cloning we shall utilize the general notion of symmetric extensions of
quantum states (see [13–15]) to provide a general rule and examples of channels with zero one-
way capacity. We show now that every state ρAB(�) which has a symmetric extension ρABB ′

has special featured one-way distillable entanglement D→ and one-way quantum channel
capacity Q→ according to its quantum channel implied by Jamiolkowski isomorphism. The
following observation that describes the above reads

Observation 1. If any bipartite state ρAB has a symmetric extension ρABB ′ , so that
ρABB ′ = ρAB ′B , then for the one-way distillable entanglement there holds: D→(�AB) = 0.

Proof of the above theorem is immediate and follows from quantum entanglement
monogamy (cf [4, 12]). If Alice sends classical information to Bob and they distill singlet in
the protocol then the state cannot have symmetric extension since Bob’s colleague, say Brigitte
(corresponding to index B’) could also receive the same message from Alice and finally share
the singlet with Alice too. But Alice’s particle cannot be maximally entangled with two
different particles at the same time (this is just the entanglement monogamy property). So a
symmetric extendible state cannot have one-way distillable entanglement nonzero. Combining
the above observation we get immediately:

Observation 2. A sufficient condition for one-way quantum capacity of a given quantum
channel � to vanish is symmetric extendibility of the state �(�) isomorphic to the channel.

As a special example of application of these observations we use below bipartite state ρAB

that is extendible for F � 1
2 , moreover, note that in this range the state may be quite strongly

entangled

ρAB = F

3
P+ +

1 − F

3
(|01〉〈01| + |20〉〈20| + |21〉〈21|). (1)

Note that filtering on Bob’s side the state ρAB and in general any such a state
does not change the extendibility, what may be simply proved. Applying filtering with
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W = diag
[
1, 1√

F
, 1√

2−F

]
we get a state ρ̃AB and a maximally mixed state ρ̃A on Alice’s side

ρ̃AB = W ⊗ IρABW † ⊗ I

T r{W ⊗ IρABW † ⊗ I } , ρ̃A = I

3

ρ̃AB =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F
3 0 0 0

√
F

3 0 0 0 F

3
√

2−F

0 1−F
3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0√
F

3 0 0 0 1
3 0 0 0

√
F

3
√

2−F

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1−F

3(2−F)
0 0

0 0 0 0 0 0 0 1−F
3(2−F)

0
F

3
√

2−F
0 0 0

√
F

3
√

2−F
0 0 0 F

3(2−F)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2)

For any of the above states the extension can be found by means of linear optimization
with the help of SEDUMI module [23]. We have found the extension of ρAB very easily, in
fact we have for F � 1

2 the following spectral decomposition of the extension ρBAB :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|ϕ0〉 = |020〉 and λ0 = 1 − F

6

|ϕ1〉 = |001〉 + |100〉 + |111〉 + |122〉 + |221〉 and λ1 = F

3

|ϕ2〉 = |021〉 and λ2 = 1 − 2F

6

|ϕ3〉 = |101〉 and λ3 = 1 − 2F

3

|ϕ4〉 = |120〉 and λ4 = 1 − F

6

|ϕ5〉 = |121〉 and λ5 = 1 − 2F

6
,

(3)

where generally eigenvalues have to fulfil the following conditions so that after tracing out
Brigitte we obtain ρAB :⎧⎪⎨⎪⎩

λ0 + λ4 = 1 − F

3

λ2 + λ5 = 1 − 2F

3
.

(4)

According to these constructions we may find another state ρBAB that is nearest (in the
set of states constructed on the above eigenvectors) to the singlet in the sense of fidelity
(F = 〈�+|ρAB|�+〉) of its local reduction ρAB{

ρBAB = 1
5 |ϕ1〉〈ϕ1|

ρAB = 3
5P+ + 1

5 |01〉〈01| + 1
5 |21〉〈21|. (5)

As a generalization of such states we construct states extreme in the above sense for
arbitrary dimension

ϒ = d

2d − 1
P+ +

1

2d − 1

d−1∑
i=1

|i0〉〈i0|. (6)

3



J. Phys. A: Math. Theor. 42 (2009) 135306 M L Nowakowski and P Horodecki

We state now the following question as a natural conclusion of the above analysis:

Question: What is the maximal possible value of fidelity of ρ that we may obtain from states
for which Q→ = 0?

3. Upper bound on D→

In this section we consider the distance of any state from the set of extendible states. Note
that the set of extendible states is convex and compact which can be obviously obtained
from the extendibility of any convex combination of extendible states. Subsequently, we show
that the set is closed under local operations and one-way classical communication (1-LOCC)
in the following lemma:

Lemma 3.1. The set EAB of symmetrically extendible states is mapped under 1-LOCC for
� : B(HAB) → B(HÃB̃) into the set of symmetrically extendible states EÃB̃.

Proof.

ρAB ⊂ EAB ⇒ ∃ρABB′ ρABB′ = ρAB′B ∧ TrB′ρABB′ = ρAB

⇒ T rB̃ ′�(ρABB ′) = ρÃB̃ ⊂ EÃB̃,

where

�(ρABB ′) =
K,L∑
i,j=1

(
I Ã

2 ⊗ WB→B̃
j i ⊗ WB ′→B̃ ′

ji

)(
V A→Ã

i ⊗ IB
1 ⊗ IB ′

1

)
ρABB ′

×(
V

A→Ã†
i ⊗ IB

1 ⊗ IB ′
1

)(
I Ã

2 ⊗ W
B→B̃†
ji ⊗ W

B ′→B̃ ′†
ji

)
and operations acting on Bob’s side are trace preserving due to the necessity of non-breaking
the property of extendibility. �

For our analysis we define the measure of this distance based on the definition of relative
entropy

Definition 3.2. Assume that a convex set EAB is a set of extendible states, i.e.

EAB = {σAB : ∃�ABB′CσAB = σAB′ = TrCB[|�ABB′C〉〈�ABB′C |]}.
Then the distance of a state ρAB on HAB = HA ⊗ HB with dimHA = dA and dimHB = dB
from the set of extendible states EAB of d ⊗ d type where d = max[dA, dB] is defined by

REAB (ρAB) = δAB inf
σAB∈E

R(̃ρAB‖σAB), (7)

where ∀ρ,σ R(ρ‖σ) = T r[ρ log ρ − ρ log σ ] and δ = − log d

log (d+1)

2d

with d = max[dA, dB ] due to

normalization of this function on maximally entangled states. In formula (7) ρ̃AB is taken as
a state of d ⊗ d type (after embedding ρAB into d ⊗ d space).

Using techniques [26] we show that the nearest one in an arbitrary dimension is a state
ρ(d, Fmax) from a subset of isotropic states ρ(d, F ) [27] with fidelity F � Fmax for which
those are symmetrically extendible

Fmax = d + 1

2d
(8)

ρ(d, F ) = d2

d2 − 1

[
(1 − F)

I

d2
+

(
F − 1

d2

)
P+

]
. (9)
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Indeed, following [26] one needs to analyze operators from a six-dimensional non-
commutative C∗-algebra that are U ⊗ U ⊗ U -invariant and V(23)-invariant. Such operators
S will be represented as a linear combination of the basis elements of the algebra:
B = {S+, S−, S0, S1, S2, S3} where for the trace condition one obtains [26] conditions for
factors of the combination: s2 = s3 = 0 and, further, from positivity: s0 = 1 − s+ − s−.

S = s+S+ + s−S− + s0S0 + s1S1. (10)

The matter of interest is now the tetrahedron in three-dimensional Euclidian space of
parameters (s+, s−, s1) confined by the hyperplanes [26]: {h′

1, h
′
2, h

′
3, h

′
4} in which exists

the state �ABE giving the searched symmetric extendible reduction ρAB . For maximizing the
distance of the unknown state ρAB to singlet it suffices to find the maximization over fidelity F̃

between the symmetric extension represented as �ABE and virtually extended unnormalized
operator ρABB ′ = P+ ⊗ I as F̃max = T r[P+ ⊗ I�ABE] = T r[P+ρAB] = Fmax:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

F+ = T r[(P+ ⊗ I )S+]/T r
[
S2

+

] = 0

F− = T r[(P+ ⊗ I )S−] = 0

F0 = T r[(P+ ⊗ I )S0]/T r
[
S2

0

] = d/2d

F1 = T r[(P+ ⊗ I )S1]/T r
[
S2

1

] = 1/2d

(11)

{
F̃ = F0 + −→s ◦ −→

f

F̃max = max−→s ∈�
F̃ ,

(12)

where � denotes the tetrahedron bounded by mentioned hyperplanes,
−→
f = [F+ − F0, F− −

F0, F1] and −→s = [s+, s−, s0]. Normalization of parameters Fi inherits from the commutation
relations [26] between operators Si . Maximization results in −→s = [0, 0, 1] that relates to the
found aforementioned isotropic states ρAB = ρ(d, Fmax). The explicit form of the tripartite
symmetric extension of isotropic states ρ(d, Fmax) in the border of extendibility is

�ABE = 1

2d
(S0 + S1), (13)

where [26] ⎧⎪⎪⎨⎪⎪⎩
S0 = 1

d2 − 1
(d(X + V XV ) − (XV + V X))

S1 = 1

d2 − 1
(d(XV + V X) − (X + V XV ))

for

|
〉 =
∑

i

|ii〉, X = |
〉〈
| ⊗ I, V = V(23) =
∑
ijk

|ijk〉〈ikj |.

It is important to note that the same results can be obtained numerically by means of linear
programming methods that we have utilized to find the broad class of symmetric extendible
states.

Following this, we analyze if similarly to distance from separable states one can construct
an appropriate entanglement measure based on (7). The normalized distance from the set of
extendible states does not satisfy though all necessary conditions [24, 25] that every measure
of one-way distillable entanglement has to satisfy; introduction of the normalization factor δAB

causes REAB (ρ) to become explicitly dependant on the dimension of the system AB, therefore,
for protocols increasing dimension of the input state the parameter is not a monotone

5
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(A1) If σAB is separable then REAB (σAB) = 0 due to the fact that every separable state is
extendible.

(A2) Local unitary operations leave REAB (σAB) invariant that is satisfied due to invariancy
of distance measures under local unitary transformations, i.e. REAB (σAB) = REAB

(
UA ⊗

UBσABU
†
A ⊗ U

†
B

)
.

(A3) (Restricted 1-LOCC monotonicity.) The parameter REAB (σAB) of one-way distillable
entanglement does not increase under non-increasing dimension 1-LOCC, i.e. � :
B(HAB) → B(HÃB̃) with nAB = max[dA, dB ], nÃB̃ = max[dÃ, dB̃] for nAB � nÃB̃ ,
then

REÃB̃ (�σAB) � REAB (σAB). (14)

This condition may be simply proved due to non-increasing of R(ρ‖σ) under a subclass of
1-LOCC operations � that is stated above in the lemma. Namely, because �EAB ⊂ EÃB̃
and assuming that σ ∗ is an extendible state that realizes the minimal value in equation (7)
we have

REAB (ρ) = δABR(ρ‖σ ∗) � δÃB̃R(�ρ‖�σ ∗)
� δÃB̃ inf

σ∈EÃB̃
R(�ρ‖σ) = REÃB̃ (�ρ),

where nAB � nÃB̃ derives the condition δAB � δÃB̃ .

However, we show further that the entanglement parameter can be utilized for bounding
one-way entanglement of distillation due to the preparation of the measure in the asymptotic
regime.

In general, every entanglement parameter of type E(σ) = α infρ∈� D(σ‖ρ) where
D(σ‖ρ) is appropriate distance between σ and ρ, � denotes the characteristic set to which
the distance is measured and α normalizes the parameter so that E(|�+〉〈�+|) = log d is not
monotonic, i.e. ∃�E(σ) > E(�(σ)). For REAB unitary injection of input state ρAB into higher
dimensional space gives REAB (ρ) > REÃB̃ (�(ρ)).

Additionally, following analysis in [28, 29], we show that the entanglement parameter
satisfies:

B1. (Continuity on isotropic states.) We may simply show that this parameter is continuous
on isotropic states ρ(dn, Fn) with Fn → 1, dn → ∞ that means

RE(ρ(dn, Fn))

log dn

→ 1

as then RE(ρ(dn, Fn)) → log dn that is easy to check.
Following the papers [28, 30] and the above definition we define the distance in the

asymptotic regime as follows:

R∞
EAB

(ρAB) = lim sup
n→∞

REAB (ρAB
⊗n)

n
. (15)

One can also propose other measures, but this will be the subject of analysis elsewhere3.
Having defined the above regularized parameter R∞

EAB
(ρAB), we are now able to determine

an upper bound on the one-way distillable entanglement. In [9] Devetak and Winter have
proved a very powerful conjecture called ‘hashing inequality’

D→ � S(ρB) − S(ρAB)

3 For instance one can propose fidelity of state according to the nearest purified extension as follows FE (ρAB) =
infσAB∈E F(ρAB, σAB) = infσAB∈E |〈
ABB ′C |�ABB ′C〉| where the set E is defined as in the above definition and both

ABB ′C and �ABB ′C are a purification of a suitable state. It can be shown that such quantity is also restricted 1-LOCC
monotone.

6
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from which one may find particular states of nonzero D→. For the very features of measures
that bound the distillable entanglement D→, defined in [28, 29], where it was shown that
monotonicity and continuity on isotropic states are sufficient for any properly regularized
function to be upper bound for D→, we may prove now the following theorem exploiting only
distillation protocols in the line of the proof:

Theorem 3.3. For any bipartite state ρAB there holds:

D→(ρAB) � R∞
EAB

(ρAB). (16)

Proof. Any one-way distillation protocol can be reduced to the distillation protocol
[28–30] where the input is ρ⊗n and the output is a family of the states ρ(dn, Fn) with
limn→∞

log dn

n
= D→(ρ) and Fn → 1. We may always put dn � nn

AB for nAB = min[dA, dB ]
since there holds D→(ρ) � log nAB . Thus, we can consider only 1-LOCC non-increasing
dimensions of input and so monotonicity of REAB holds. By analogy with the theorem put in
[28–30] the properties (A3) and (B1) imply that R∞

EAB
(ρAB) is an upper bound for D→. The

regularization (15) with supreme value enables the upper bound of D→. �

4. Conclusions

Quantum channels theory still has many unsolved problems. We have pointed out a general
test for zero capacity of one-way channel capacity (which has been shown to be equal to
zero-way capacity [18]). The test is based on checking the existence of a symmetric extension
of a state isomorphic to a given channel. The test can be very easily performed with the help
of popular semi-definite programming codes. Finally, based on the test, we have found a
new parameter of entanglement. Its suitable regularized version is an upper bound on one-
way distillable entanglement of a given quantum state. Note that, although the entanglement
monogamy property has been known for a long time, this is the first entanglement parameter
based explicitly on that property and symmetric extendibility of quantum states. We hope that
the above results will help in further analysis of various aspects of quantum channels. It is
very interesting that the recently developed complete hierarchies approach to the separability
problem [33] has been extended [32] to include symmetric extensions of quantum operators
which leads to class of entanglement measures. This gives hope that symmetric extensions will
be a useful tool not only to qualify but also to quantify some aspects of quantum entanglement.

Acknowledgments

We acknowledge financial support by the LFPPI network and by the European Research
Project SCALA.

References

[1] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 5 3824
[2] Lo H-K, Popescu S and Spiller T (eds) 1998 Introduction in Quantum Information and Computation (Singapore:

World Scientific)
Gruska J 1999 Quantum Computing (London: McGraw-Hill)
Bouwmeester D, Ekert A K and Zeilinger A (eds) 2000 The Physics of Quantum Information : Quantum

Cryptography, Quantum Teleportation, Quantum Computation (New York: Springer)
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge

University Press)

7

http://dx.doi.org/10.1103/PhysRevA.54.3824


J. Phys. A: Math. Theor. 42 (2009) 135306 M L Nowakowski and P Horodecki

Alber G, Beth T, Horodecki M, Horodecki P, Horodecki R, Röttler M, Weinfurter H, Werner R F and
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